A PHS Tour in Audio/Acoustics

Applications in Virtual Reality, Control and Health

Thomas Hélie, CNRS

S3AM Team

Laboratory of Sciences and Technologies of Music and Sound IRCAM – CNRS – Sorbonne Université Paris, France

Spring School on Theory and Applications of Port-Hamiltonian Systems 31 March 2019 – 5 April 2019 Fraueninsel (Chiemsee)

Context and motivation

- Model input-output multi-physics systems for sound and musical applications:
 - Phenomena: mechanical, acoustic, electronic, magnetic, etc
 - <u>Realism</u>: nonlinearities, non ideal dissipations, etc
- **2** Satisfy fundamental physical properties:
 - causality, stability, passivity and more precisely ...
 - the power balance structured into conservative/dissipative/source parts
 - other natural invariants and symmetries (if any)
- Simulate such systems and preserve these properties in the discrete time domain (+accuracy+sound quality/Shannon-Nyquist principle)
- Obsign code generators from netlists for real-time applications
- **Obsign correctors and controllers** to reach target behaviours

Context

2 Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

5 Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Conclusion

2 Framework: basics, recalls and tools

- Modelling: Component-based approach & Port-Hamiltonian Systems
- Power-balanced numerical method
- Tool: the PyPHS Python library

[Falaize]

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

- Control applications in acoustics
- 6 Voice: a minimal model to analyze self-oscillations

Conclusion

A physical system is made of...

s ₂	• Energy-storing components: $E = \sum_{n=1}^{N} e_n \ge 0$	(energy)
	• Dissipative components: $Q = \sum_{m=1}^{M} d_m \ge 0$	(dissipated power)
	• External sources: $P_{\text{ext}} = \sum_{p=1}^{P} s_p$	(external power)
	• Conservative connections $\frac{dE}{dt} = P_{\text{ext}} - Q$	(power balance)

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ _{5/60}

A physical system is made of...

• Energy-storing components: (energy) $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(x_n) \ge 0$ • Dissipative components: (dissipated power) $Q = \mathbf{z}(\mathbf{w})^T \mathbf{w} = \sum_{m=1}^M z_m(w_m) w_m \ge 0$ (effort × flow : force × velocity, voltage × current, etc) External sources: (external power) $P_{\text{ext}} = \mathbf{u}^T \mathbf{y} = \sum_{p=1}^{P} u_p y_p$ Conservative connections (power balance)

 $\nabla H(\mathbf{x})^T \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} + \mathbf{z}(\mathbf{w})^T \mathbf{w} - \mathbf{u}^T \mathbf{y} = \mathbf{0}$

Port-Hamiltonian Formulation Power balance $\begin{pmatrix} \frac{\mathrm{dx}}{\mathrm{dt}} \\ \frac{\mathrm{w}}{\mathrm{v}} \end{pmatrix} = S \cdot \begin{pmatrix} \frac{\nabla H(\mathbf{x})}{\mathbf{z}(\mathbf{w})} \\ \frac{\mathbf{z}(\mathbf{w})}{\mathbf{u}} \end{pmatrix}$ $0 = A^T B$ $= A^T S A$ if $S = -S^T$ A: components constitutive laws & external actions, S: interconnections between flows and efforts

(ロ) (四) (三) (三) (三) (100 - 100

Example: damped mechanical oscillator

Example: damped mechanical oscillator

Μ

K

_	$x = \left(\begin{array}{c} p \\ q \end{array}\right)$	momentum elongation	$H(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \begin{pmatrix} M^{-1} \\ 0 \end{pmatrix}$	$\binom{0}{K}$ x	kinetic potential
	$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \left(\begin{array}{c}\dot{p}\\\dot{q}\end{array}\right)$	inertia force spring velocity	$\nabla H(\mathbf{x}) = \begin{pmatrix} p/M \\ K q \end{pmatrix}$		mass velocity spring force
2	$\mathbf{w} = v_{\mathrm{d}}$	dashpot velocity	$z(w) = \mathit{Cv}_{\mathrm{d}}$		damping force
722	$\mathbf{y} = \mathbf{v}_{\mathrm{ext}}$	external velocity	$\mathbf{u} = f_{\mathrm{ext}}$		external force

Example: damped mechanical oscillator

$$\begin{array}{l} \dot{p} &= f_{\text{ext}} - K q - C v_{\text{d}} \\ \dot{q} &= p/M \\ v_{\text{d}} &= p/M \\ v_{\text{ext}} &= p/M \end{array} \longleftarrow \left(\begin{array}{c} \frac{\mathrm{dx}}{\mathrm{dt}} \\ \hline \mathbf{w} \\ -\mathbf{y} \end{array} \right) = \underbrace{ \begin{pmatrix} 0 & -1 & | & -1 & | & +1 \\ +1 & 0 & 0 & 0 \\ \hline \frac{+1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \hline \mathbf{s} = -S^{T} \end{array} } \cdot \left(\begin{array}{c} \nabla H(\mathbf{x}) \\ \hline \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \end{array} \right)$$

<ロ > < 回 > < 国 > < 王 > < 王 > 三 の < で 6/60

Some variations

Hamiltonian systems (conservative, autonomous)

$$\begin{pmatrix} F_{M} \\ \frac{v_{K}}{\cdot} \\ \frac{\cdot}{\cdot} \end{pmatrix} = \begin{pmatrix} 0 & -1 & | \cdot & | \cdot \\ +1 & 0 & | \cdot & | \cdot \\ \hline & \cdot & \cdot & | \cdot & | \cdot \end{pmatrix} \cdot \begin{pmatrix} v_{M} \\ F_{K} \\ \hline & \vdots \\ \hline & \cdot & | \cdot & | \cdot \end{pmatrix}$$

"Mass+Damper+Excitation" (spring removed)

$$\begin{pmatrix} F_{\mathsf{M}} \\ \vdots \\ \hline v_{\mathsf{C}} \\ \hline -v_{\mathrm{ext}} \end{pmatrix} = \begin{pmatrix} 0 & \vdots & -1 & +1 \\ \hline \vdots & \vdots & \vdots & \vdots \\ \hline +1 & \vdots & 0 & 0 \\ \hline -1 & \vdots & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} v_{\mathsf{M}} \\ \vdots \\ F_{\mathsf{C}} \\ \hline F_{\mathrm{ext}} \end{pmatrix}$$

"Mass+Excitation"

$$\begin{pmatrix} F_{M} \\ \vdots \\ \hline -v_{\text{ext}} \end{pmatrix} = \begin{pmatrix} 0 & \vdots & +1 \\ \hline \vdots & \vdots & \vdots \\ \hline -1 & \vdots & 0 \end{pmatrix} \cdot \begin{pmatrix} v_{M} \\ \vdots \\ \hline \vdots \\ F_{\text{ext}} \end{pmatrix}$$

Formulations

1. Differential-Algebraic

$$\begin{pmatrix} \frac{d\mathbf{x}}{dt} \\ \hline \mathbf{w} \\ \hline -\mathbf{y} \end{pmatrix} = S \cdot \begin{pmatrix} \nabla H(\mathbf{x}) \\ \hline \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \end{pmatrix}, \qquad S = -S^{T}$$

2. Differential $(1 \rightarrow 2)$ by solving algebraic part $w = W(\nabla H(x), u)$ $\begin{cases}
\frac{dx}{dt} = (J-R) \quad \nabla H(x) + Gu, \quad J = -J^T, \quad R = R^T \ge 0 \\
-y = -G^T \quad \nabla H(x) + Du, \quad D = -D^T
\end{cases}$

"Mass-Spring-Damper": $H(x) = \frac{x_1^2}{2M} + \frac{Kx_2^2}{2}$, z(w) = Cw

$$S = \begin{bmatrix} 0 & -1 & | & -1 & | & +1 \\ +1 & 0 & 0 & 0 \\ \hline +1 & 0 & 0 & 0 \\ \hline -1 & 0 & 0 & 0 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix}, \quad R = \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix}, \quad D = 0$$

2 Framework: basics, recalls and tools

- Modelling: Component-based approach & Port-Hamiltonian Systems
- Power-balanced numerical method
- Tool: the PyPHS Python library

Falaize

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ _{9/60}

- 3 Analog electronics and electro-acoustics
- 4 Mechanics: nonlinear damped vibrations
- Control applications in acoustics
- 6 Voice: a minimal model to analyze self-oscillations

Conclusion

Power-balanced numerical method

(see also [Lopes et al., IFAC-LHMNLC'2015])

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ○ ■ ⑦ Q ℃ 10/60

Classical numerical schemes for $\frac{dx}{dt} = f(x)$:

- efficiently approximate $\frac{d.}{dt}$ and exploit f
- a posteriori analysis of stability

Power-balanced numerical method

(see also [Lopes et al., IFAC-LHMNLC'2015])

Classical numerical schemes for $\frac{dx}{dt} = f(x)$:

- efficiently approximate $\frac{d}{dt}$ and exploit f
- a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{n} \frac{\partial H}{\partial x_{n}} \frac{\mathrm{d}x_{n}}{\mathrm{d}t} \simeq \sum_{n} \underbrace{\frac{H_{n}(x_{n}[k+1]) - H_{n}(x_{n}[k])}{x_{n}[k+1] - x_{n}[k]}}_{\nabla^{d} H\left(x[k], \delta x[k]\right)_{n}} \underbrace{\frac{x_{n}[k+1] - x_{n}[k]}{\delta t}}_{(\delta x[k]/\delta t)_{n}} = \frac{E[k+1] - E[k]}{\delta t}$$

Jointly substitute $\dot{\mathbf{x}} \to \delta \mathbf{x} / \delta t$ and $\nabla H(\mathbf{x}) \to \nabla^{d} H(\mathbf{x}, \delta \mathbf{x})$:

$$\underbrace{\begin{pmatrix} \frac{\delta \mathbf{x}}{\delta t} \\ \mathbf{w} \\ -\mathbf{y} \end{pmatrix}}_{B} = S \underbrace{\begin{pmatrix} \nabla^{d} H(\mathbf{x}, \delta \mathbf{x}) \\ \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \end{pmatrix}}_{A}$$
Simulation : solve $(\delta \mathbf{x}, w)$ at each time step k (e.g. Newton-Raphson algo.)

Power-balanced numerical method

(see also [Lopes et al., IFAC-LHMNLC'2015])

Classical numerical schemes for $\frac{dx}{dt} = f(x)$:

- efficiently approximate $\frac{d.}{dt}$ and exploit f
- a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{n} \frac{\partial H}{\partial x_{n}} \frac{\mathrm{d}x_{n}}{\mathrm{d}t} \simeq \sum_{n} \underbrace{\frac{H_{n}(x_{n}[k+1]) - H_{n}(x_{n}[k])}{x_{n}[k+1] - x_{n}[k]}}_{\nabla^{d} H\left(x[k], \delta x[k]\right)_{n}} \underbrace{\frac{x_{n}[k+1] - x_{n}[k]}{\delta t}}_{(\delta x[k]]/\delta t)_{n}} = \frac{E[k+1] - E[k]}{\delta t}$$

Jointly substitute $\dot{\mathbf{x}} \rightarrow \delta \mathbf{x} / \delta t$ and $\nabla H(\mathbf{x}) \rightarrow \nabla^{d} H(\mathbf{x}, \delta \mathbf{x})$:

$$\underbrace{\begin{pmatrix} \frac{\delta \mathbf{x}}{\delta t} \\ \mathbf{w} \\ -\mathbf{y} \end{pmatrix}}_{B} = S \underbrace{\begin{pmatrix} \nabla^{d} H(\mathbf{x}, \delta \mathbf{x}) \\ \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \end{pmatrix}}_{\mathbf{a}}$$

Simulation : solve $(\delta \mathbf{x}, w)$ at each time step k (e.g. Newton-Raphson algo.)

- Skew-symmetry of S preserved $\Rightarrow 0 = A^T S A = A^T B = \delta E / \delta t + z(w)^T w u^T y$
- For linear systems, $\nabla^d H(\mathbf{x}, \delta \mathbf{x}) = \nabla(\mathbf{x} + \delta \mathbf{x}/2)$ restores the mid-point scheme.
- Method also applies to nonlinear components and non separate Hamiltonian

Simulation 1: mass-spring-damper

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - - - の Q (2) - 11/60

Simulation 2: idem with a hardening spring

- Potential energy: $H_2^{\rm NL}(x_2) = K L^2 \left[\cosh(x_2/L) 1 \right] \left(\sim k x_2^2/2 \right)$
- Physical law: $F_2 = (H_2^{\rm NL})'(x_2) = K L \sinh(x_2/L) (\sim K x_2)$
- Reference elongation: $L = \ell_0 / 4 = 25 \text{ mm}$

Pramework: basics, recalls and tools

- Modelling: Component-based approach & Port-Hamiltonian Systems
- Power-balanced numerical method
- Tool: the PyPHS Python library

[Falaize]

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ? 13/60

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

- Control applications in acoustics
- 6 Voice: a minimal model to analyze self-oscillations

7 Conclusion

Automatic generation of code: the PyPHS Python library [Antoine Falaize]

https://pyphs.github.io/pyphs/

2012-16 : First version

[Falaize, PhD]

2016-- : Opensource library with periodic releases [Falaize & contributors]

 \rightarrow a short presentation (pdf file)

Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

- Guitar Pedal and Electric Piano
- Ondes Martenot
- Operational Amplifier

[Falaize, PhD'16] [Najnudel et al., AES'18] [Muller et al., DAFx'19]

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q · 15/60

Mechanics: nonlinear damped vibrations

Control applications in acoustics

6 Voice: a minimal model to analyze self-oscillations

7 Conclusion

PhD, 2016: Antoine Falaize Passive modelling, simulation, code generation and correction of audio multi-physical systems

Two examples

Wah pedal (CryBaby): netlist \rightarrow PyPHS \rightarrow LateX eq. & C code

A simplified Fender-Rhodes Piano

Sound 2

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ☉ 16/60

1.68 1.76

 $\times 10^{-2}$

Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

- Guitar Pedal and Electric Piano
- Ondes Martenot
- Operational Amplifier

Mechanics: nonlinear damped vibrations

- Control applications in acoustics
- Voice: a minimal model to analyze self-oscillations

Conclusion

[Falaize, PhD 16] [Najnudel et al., AES'18] [Muller et al., DAFx'19]

Real-time simulation of Ondes Martenot

[Najnudel et al., AES2018]

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊂ 18/60

Real-time simulation of Ondes Martenot

[Najnudel et al., AES2018]

 \rightarrow Video 3 [Thomas Bloch, improvisation, 2010]

Context/Problem (Musée de la Musique, Philharmonie de Paris)

Technological obsolescence of a musical instrument: 70/281 remaining instruments (handmade), 1200 pieces (Varèse, Maessian, etc)

Objective

(Collegium Musicae-Sorbonne Université)

Real-time simulation of the circuit based on physics \rightarrow PHS approach

Ondes Martenot: 5 stages circuit

var. osc. fixed osc. demodulator preamp. power amp.

Specificities: heterodyne oscillators (1930's)

• 2 High frequencies (≈ 80 kHz $\pm \delta f$) \rightarrow demodulator \rightarrow audio range ($\delta f, 2\delta f, ...$)

- Vacuum tubes: $w = [grid and plate currents]^T$, z(w) = associated voltages(passive parametric model [Cohen'12])
- Pb: ribbon-controlled oscillator involving time-varying capacitors in parallel

Ondes Martenot: capacitors in parallel

Problem:

Capacitors	(n = A, B)
State (charge):	q_n
Energy :	$H_n(q_n)$
Flux (current):	$i_n = \mathrm{d}q_n/\mathrm{d}t$
Effort (voltage):	$v_n = H'_n(q_n)$

$$\begin{aligned} \mathbf{v}_{C} = \mathbf{v}_{A} = \mathbf{v}_{B} & \& \\ \begin{bmatrix} i_{A} \\ i_{B} \\ -\mathbf{v}_{C} \end{bmatrix} = \begin{bmatrix} \text{not} \\ \text{realizable} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{A} = H'_{A}(q_{A}) \\ \mathbf{v}_{B} = H'_{B}(q_{B}) \\ i_{C} \end{bmatrix} \\ & \rightarrow \text{Build the equivalent component } C = A//B \end{aligned}$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 20/60

Ondes Martenot: capacitors in parallel

Problem:

Capacitors	(n = A, B)
State (charge):	q_n
Energy :	$H_n(q_n)$
Flux (current):	$i_n = \mathrm{d}q_n/\mathrm{d}t$
Effort (voltage):	$v_n = H'_n(q_n)$

$$\begin{bmatrix} i_A \\ i_B \\ -v_C \end{bmatrix} = \begin{bmatrix} \text{not} \\ \text{realizable} \end{bmatrix} \begin{bmatrix} v_A = H'_A(q_A) \\ v_B = H'_B(q_B) \\ i_C \end{bmatrix}$$

 \rightarrow Build the equivalent component C = A//B

Hyp: $q_n \mapsto v_n = H'_n(q_n)$ bijective (increasing law)

Find the total energy $H_C(q_C)$ for the total charge $q_C = q_A + q_B$

Charge as a function of the voltage v_n = v_C: q_n = [H'_n]⁻¹(v) := Q_n(v_C)
 Total charge (idem): q_C = [Q_A + Q_B](v_C) =: Q_C(v_C)

③ Total energy function: $H_C(q_C) = \sum_{n=A,B} H_n \circ Q_n \circ Q_C^{-1}(q_C)$

Also available if H_n depends on additional states (ribbon position ℓ)

Power-balanced simulation

with $H(q,\ell) = q^2/(2C_{\mathrm{Martenot}}(\ell))$

・ロト・日本・モト・モー ショー ショー

 \rightarrow video 4 (sound=circuit output voltage, without the *diffuseurs*)

Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

- Guitar Pedal and Electric Piano
- Ondes Martenot
- Operational Amplifier

[Falaize, PhD'16] [Najnudel et al., AES'18] [Muller et al., DAFx'19]

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ? 21/60

- Mechanics: nonlinear damped vibrations
- 5 Control applications in acoustics
- 6 Voice: a minimal model to analyze self-oscillations

Conclusion

Operational Amplifier

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < ↔ 22/60

Operational Amplifier

[Muller et al., DAFx'19]

Framework: basics, recalls and tools

Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

- Nonlinear damping in a beam
- Nonlinear Berger plate
- Nonlinear string and Finite Element Method

[Hélie,Matignon,2015] [Hélie,Roze'18] [Raibeau, Roze'18]

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 23/60

Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Conclusion

Motivation

1. Theoretical issues

Given a linear conservative mechanical system,

- find damping models that preserve the eigen modes (with eigen structure)
- design nonlinear damping in such a class
- provide a power balanced formulation that is preserved in simulations

2. Application in musical acoustics

Build physical models to produce:

- a variety of beam sounds (glokenspiel, xylophone, marimba, etc)
- morphed sounds through some extrapolations based on physical grounds (e.g. meta-materials with damping depending on the magnitude)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 24/60

Damping models for $M\ddot{q} + C\dot{q} + Kq = f$ (finite-dimensional case)

Conservative problem (C=0)

•
$$\ddot{q} + (M^{-1}K)q = M^{-1}f$$

• Eigen-modes $e_i: (M^{-1}K)e_i = \omega_i^2 e_i$ ($\omega_i:$ angular freq.)

Damping that preserves eigen-modes ?

- Choose $M^{-1}C$ as a non-negative polynomial of matrix $M^{-1}K$
- → Caughey class (1960): $C = c_0 M + c_1 K + c_2 K M^{-1} K + ...$

Damping models for $M\ddot{q} + C\dot{q} + Kq = f$ (finite-dimensional case)

Conservative problem (C=0)

•
$$\ddot{q} + (M^{-1}K)q = M^{-1}f$$

• Eigen-modes e_i : $(M^{-1}K)e_i = \omega_i^2 e_i$ (ω_i : angular freq.)

Damping that preserves eigen-modes ?

- Choose $M^{-1}C$ as a non-negative polynomial of matrix $M^{-1}K$
- → Caughey class (1960): $C = c_0 M + c_1 K + c_2 K M^{-1} K + ...$

Eigen-modes with nonlinearly-damped dynamics ?

• Make c_n depend on the dynamics

Ex.: damping as a function of energy H(x)

$$c_n(x) = \kappa_n(H(x)) \in [c_n^-, c_n^+]$$
 with $c_n^- \ge 0$

- Increasing: $\kappa_n(h) = c_n^- + (c_n^+ c_n^-)f(\frac{h}{h_0})$
- Decreasing: $\kappa_l(h) = \frac{c_n^+ (c_n^+ c_n^-)f(\frac{h}{h_0})}{k_n}$

Application: the Euler-Bernoulli beam 1. Pinned beam excited by a distributed force

- (H1) Euler-Bernoulli kinematics: straight cross-section after deformation
- (H2) linear approximation for the conservative problem
- (H3) viscous and structural dampings: only $c_0, c_1 \ge 0$
- 2. Dimensionless model

(w: deflection, $t \ge 0$, $0 \le \ell \le 1$)

• PDE:
$$\underbrace{\partial_t^2 w}_{t} + \underbrace{(c_0 + c_1 \partial_\ell^4)}_{t} \partial_t w + \underbrace{\partial_\ell^4}_{t} w = f_{\text{ext}}$$

• Boundaries $\ell \in \{0,1\}$: fixed extremities (w=0), no momentum ($\partial_{\ell}^2 w=0$)

• Energy:
$$E = \int_0^1 \left(\frac{(\partial_\ell^2 w)^2}{2} + \frac{(\partial_t w)^2}{2} \right) \mathrm{d}\ell$$

3. Modal decomposition: $e_m(\ell) = \sqrt{2} \sin(m\pi\ell)$

$$(1 \le m \le n)$$

PHS:

$$\begin{array}{c} \partial_{t}x = (J-R)\nabla H(x) + Gu \text{ with } J = \begin{bmatrix} 0_{n\times n} & I_{n} \\ -I_{n} & 0_{n\times n} \end{bmatrix}, R = \begin{bmatrix} 0_{n\times n} & 0_{n\times n} \\ 0_{n\times n} & C \end{bmatrix} \\ y = G^{T}\nabla H(X) & G^{T} = [0_{n\times n}, I_{n}] \\ \text{with } H\left(x = [q; p = M\dot{q}]\right) = \frac{1}{2}p^{T}M^{-1}p + \frac{1}{2}q^{T}Kq \\ \text{and } q = [q_{1}, \dots, q_{n}]^{T}, u = [u_{1}, \dots, u_{n}]^{T}, y = [y_{1}, \dots, y_{n}]^{T} \\ (projections of w, f_{ext}, v_{ext}) \\ \text{where } M = I_{n}, \quad K = \pi^{4}\text{diag}(1, \dots, n)^{4} \text{ and } C = c_{0}I_{n} + c_{1}K. \end{array}$$

Damping and simulation parameters

Nonlinear damping (from metal to wood):

 $C(x) = c_0(x)I + c_1(x)K \text{ with } c_n(x) = \beta_n(H(x)) \in [c_n^-, c_n^+]$

metal

$$c_0^- = 0.02$$
 $c_1^- = 10^{-6}$

 wood
 $c_0^+ = 0.04$
 $c_1^+ = 10^{-4}$

Numerical method preserving the power balance (discrete gradient)

- force distributed close to z = 0: $u = [1, ..., 1]^T f$
- listened signal: acceleration $[1, \ldots, 1]\dot{y}$
- n = 9 modes and time step s.t. $f_1 = 220$ Hz to $f_9 \approx n^2 f_1 = 17820$ Hz
Results: $H(x) \ll 1 \longrightarrow \text{wood}, \quad H(x) \gg 1 \longrightarrow \text{metal}$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ = り < ○ 28/60

Framework: basics, recalls and tools

Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations
 Nonlinear damping in a beam

- Nonlinear Berger plate
- Nonlinear string and Finite Element Method

[Hélie,Matignon,2015] [Hélie,Roze'18] [Raibeau, Roze'18]

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ○ 29/60</p>

5 Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Conclusion

Nonlinear Berger plate

[Hélie,Roze'18]

1. Dimensionless model

$(x,y) \in , \Omega = (0,1)^2, \ t \geq 0$

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ つ へ (? 30/60

- PDE: $\partial_t^2 w + \alpha \partial_t w + \Delta \Delta w \epsilon \Big(\int_{\Omega} |\nabla w|^2 dS \Big) \Delta w = f$
- Zero IC & pinned BC (w = 0 on $\partial \overline{\Omega}, \partial_x^2 w = 0$ if $x \in \{0, 1\}, \partial_y^2 w = 0$ if $y \in \{0, 1\}$) Energy: $E = \int_{\Omega} \frac{(\partial_t^2 w)^2}{2} dS + \int_{\Omega} \frac{(\Delta w)^2}{2} dS + \epsilon \left(\int_{\Omega} \frac{(\nabla w)^2}{2} dS\right)^2$
- 2. Modal decomposition (if $\epsilon = 0$): $e_{kl}(x, y) = 2\sin(k\pi x)\sin(l\pi y)$ $(1 \le k, l \le n)$

PHS:
$$\begin{array}{c} \partial_t x = (J-R)\nabla H(x) + Gu \text{ with } J = \begin{bmatrix} 0_{n \times n} & I_n \\ -I_n & 0_{n \times n} \end{bmatrix}, R = \begin{bmatrix} 0_{n \times n} & 0_{n \times n} \\ 0_{n \times n} & C \end{bmatrix} \\ \xrightarrow{y = G^T \nabla H(X)} & G^T = \begin{bmatrix} 0_{n \times n}, I_n \end{bmatrix} \\ \xrightarrow{s \text{ idem that the previous problem with}} \\ K = \pi^4 \text{diag}(1, \dots, (k^2 + l^2)^2, \dots, (n^2 + n^2)^2) \text{ and } C = \alpha I_n \end{array}$$

Nonlinear Berger plate

[Hélie,Roze'18]

1. Dimensionless model

$$(x,y)\in,\Omega=(0,1)^2,\ t\geq 0$$

- PDE: $\partial_t^2 w + \alpha \partial_t w + \Delta \Delta w \epsilon \Big(\int_{\Omega} |\nabla w|^2 dS \Big) \Delta w = f$
- Zero IC & pinned BC (w = 0 on $\partial \Omega$, $\partial_x^2 w = 0$ if $x \in \{0, 1\}$, $\partial_y^2 w = 0$ if $y \in \{0, 1\}$) Energy: $E = \int_{\Omega} \frac{(\partial_t^2 w)^2}{2} dS + \int_{\Omega} \frac{(\Delta w)^2}{2} dS + \epsilon \left(\int_{\Omega} \frac{(\nabla w)^2}{2} dS\right)^2$
- 2. Modal decomposition (if $\epsilon = 0$): $e_{kl}(x, y) = 2\sin(k\pi x)\sin(l\pi y)$ $(1 \le k, l \le n)$

PHS:
$$\begin{array}{c|c} \partial_t x = (J-R)\nabla H(x) + Gu \text{ with } J = \begin{bmatrix} 0_{n \times n} & I_n \\ -I_n & 0_{n \times n} \end{bmatrix}, R = \begin{bmatrix} 0_{n \times n} & 0_{n \times n} \\ 0_{n \times n} & C \end{bmatrix} \\ \xrightarrow{y = G^T \nabla H(X)} & G^T = [0_{n \times n}, I_n] \\ \xrightarrow{s \text{ idem that the previous problem with}} \\ K = \pi^4 \text{diag}(1, \dots, (k^2 + l^2)^2, \dots, (n^2 + n^2)^2) \text{ and } C = \alpha I_n \end{array}$$

Nonlinear case: $\epsilon > 0$

- Modal decomposition available: $\epsilon \left(\int_{\Omega} |\nabla w|^2 dS \right) \Delta w$ colinear to Δw
- Replace quadratic *H* by $H(q, p) = \frac{1}{2}p^T p + \frac{1}{2}q^T K q + \epsilon \left(\frac{1}{2}q^T K^{1/2}q\right)^2$ \rightarrow pitch effect on sounds \rightarrow video example 7 with sound and spectrum

Framework: basics, recalls and tools

Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

- Nonlinear damping in a beam
- Nonlinear Berger plate
- Nonlinear string and Finite Element Method

[Hélie,Matignon,2015] [Hélie,Roze'18] [Raibeau, Roze'18]

Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Conclusion

Nonlinear Kirchhoff-Carrier String and Finite Element Method [Raibeau, Roze'18]

Nonlinear Kirchhoff-Carrier string model: PDE \rightarrow FEM

$$\partial_t^2 w + \alpha \partial_t w - \left(1 + \varepsilon \int_0^1 (\partial_\ell w)^2 \,\mathrm{d}\ell\right) \partial_\ell^2 w = f$$

 $\xrightarrow{FEM} \mathbb{M}\ddot{W} + \mathbb{C}\dot{W} + (1 + \beta W^{T}\mathbb{K}W)\mathbb{K}W = F \text{ with } W = [w_{1}w_{2}\dots w_{n}]^{T}.$ Energy: $H(Q = W, P = \mathbb{M}\dot{W}) = \frac{1}{2}P^{T}\mathbb{M}^{-1}P + (1 + \frac{\beta}{2}Q^{T}\mathbb{K}Q) \frac{1}{2}Q^{T}\mathbb{K}Q.$

$$\underbrace{\begin{bmatrix} \dot{Q} \\ \dot{P} \end{bmatrix}}_{\dot{\chi}} = \left(\underbrace{\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}}_{J} - \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & \mathbb{C} \end{bmatrix}}_{R} \right) \underbrace{\begin{bmatrix} (1 + \beta Q^{T} \mathbb{K} Q) \mathbb{K} Q \\ \mathbb{M}^{-1} P \end{bmatrix}}_{\nabla H} + \underbrace{\begin{bmatrix} 0 \\ I \end{bmatrix}}_{G} \underbrace{\mathbb{K}}_{u}$$

Context

Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

5 Control applications in acoustics

- Passive Finite-Time Control of loudspeakers [Lebrun, Wijnand et al., Nodycon'19]
- (zoom) Robotised testbed for brass instruments

[Lopes,PhD'16]

Voice: a minimal model to analyze self-oscillations

Conclusion

Context

2 Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

5 Control applications in acoustics

• Passive Finite-Time Control of loudspeakers [Lebrun, Wijnand et al., Nodycon'19]

• (zoom) Robotised testbed for brass instruments

[Lopes, PhD'16]

Voice: a minimal model to analyze self-oscillations

Conclusion

Motivation: sound absorption

Here: $\{C\}$ (a) Finite-time control (\neq linear stabilization)

(b) Preserve controller passivity

Combination of (a) and (b): not straightforward.

Plane wave propagation in a tube

• 1D plane waves propagation

$$p(z,t) = p^{+}(t - z/c_{0}) + p^{-}(t + z/c_{0})$$
$$v(z,t) = \frac{p^{+}(t - z/c_{0}) - p^{-}(t + z/c_{0})}{\rho_{0}c_{0}}$$

• Boundary condition at z = 0: rigid piston

$$p^{-}(0,t) = p^{+}(0,t) - \rho_0 c_0 \dot{\xi}(t)$$

 \rightarrow Impedance matching condition:

Current-driven loudspeaker

 $S_d p_{\rm ac}(t)$

 $f_m(t)$

BI i(t)

$$S_d p_{\rm ac}(t) = \underbrace{M_{\rm m} \ddot{\xi}(t) + R_{\rm m} \ddot{\xi}(t) + K_{\rm m} \xi(t)}_{f_m(t)} + BI \ i(t)$$

Laplace force

y

- Force due to the mechanical subsystem
- Force due to the acoustic pressure

Power-balanced formulation

Stored energy:
$$\mathcal{H}(x) = K_m \frac{\xi^2}{2} + \frac{\mathfrak{p}^2}{2M_m} \ge 0$$

 $\nabla \mathcal{H}(\mathbf{x})$

 $p_{\rm ac}(t)$ Vac (t i(t)

i(*t*): current

Physical models

Δ

(4/11) Passive Finite-Time Control of loudspeakers

Ingredient 1: passive control

A passive controller ?

Passive finite-time control law

• {S} is a port-Hamiltonian system (**PHS**):

$$\{\mathcal{S}\} : \begin{array}{l} \dot{\mathbf{x}}(t) = (\mathbf{J} - \mathbf{R}) \nabla \mathcal{H}(\mathbf{x}) + \mathbf{G}\mathbf{u}(t) \\ \vdots \\ \mathbf{y}(t) = \mathbf{G}^T \nabla \mathcal{H}(\mathbf{x}) \end{array}$$

• Passivity:

• Same property imposed to {C} :

$$\begin{aligned} \{\mathcal{C}\} &: \dot{\mathbf{x}_c}(t) = (\mathbf{J}_c - \mathbf{R}_c) \nabla \mathcal{H}_c(\mathbf{x}_c) + \mathbf{G}_c \mathbf{u}(t) \\ &: \mathbf{y}_c(t) = \mathbf{G}_c^T \nabla \mathcal{H}_c(\mathbf{x}_c) \end{aligned}$$

(PHS approach)

Ingredient 1: passive control

A passive controller ?

Interconnection of $\{S\} \& \{C\}$ is a **PHS**:

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{x}_c} \end{bmatrix} = \begin{bmatrix} \mathbf{J} - \mathbf{R} & -\mathbf{G}\mathbf{G}_c^T \\ \mathbf{G}_c\mathbf{G}^T & \mathbf{J}_c - \mathbf{R}_c \end{bmatrix} \nabla \mathcal{H}_{s+c}(\mathbf{x}, \mathbf{x}_c)$$

where
$$\mathcal{H}_{s+c}(\mathbf{x},\mathbf{x}_c) = \mathcal{H}_s(\mathbf{x}) + \mathcal{H}_c(\mathbf{x}_c).$$

Example of control design

- 1. Define a total energy $\mathcal{H}_{s+c}(\mathbf{x}, \mathbf{x}_c)$ that has an equilibrium at a target \mathbf{x}^* . $\mathcal{H}_{s+c}(\mathbf{x}, \mathbf{x}_c) = (\mathbf{x} - \mathbf{x}^*)^2$.
- 2. Deduce the energy of the controller $\mathcal{H}_{c}(\mathbf{x}_{c}) = \mathcal{H}_{s+c}(\mathbf{x},\mathbf{x}_{c}) - \mathcal{H}(\mathbf{x}) \geq \mathbf{0}$

Passive finite-time control law

Ingredient 2: finite-time control

Finite-time control of a double integrator [Bernuau2015]

Consider system

$$\begin{cases} \dot{z}_1 = z_2 \\ \dot{z}_2 = v \end{cases}$$

Using the control law for $0<\alpha<1$

$$v = -k_1 \lfloor z_1 \rceil^{\frac{\alpha}{2-\alpha}} - k_2 \lfloor z_2 \rceil^{\alpha}$$

with $\lfloor x \rceil^{\alpha} \triangleq \operatorname{sign}(x) |x|^{\alpha}$, $k_1 > 0$, $k_2 > 0$, the origin is globally finite-time stable.

- $\bullet \ \ \mbox{Finite-time control} \rightarrow \ \ \mbox{nonlinear control} \\$
- Reaches target in finite-time (\neq asymptotic convergence)
- × Controller not passive

Passive finite-time control law

(7/11) Passive Finite-Time Control of loudspeakers

Passive finite-time control

Application to the loudspeaker system

• Target closed-loop energy:

$$\mathcal{H}_{s+c}(\xi,\mathfrak{p}) = M_{\mathrm{m}}k_{1}\frac{2-\alpha}{2}\left|\xi-\xi^{\star}\right|^{\frac{2}{2-\alpha}} + \frac{M_{\mathrm{m}}k_{2}}{R_{\mathrm{m}}}\frac{1}{\alpha+1}\left|\frac{\mathfrak{p}-\mathfrak{p}^{\star}}{M_{\mathrm{m}}}\right|^{\alpha+1}$$

Passive finite-time control law

Passive finite-time control

Application to the loudspeaker system

• Target closed-loop energy:

$$\begin{aligned} \mathcal{H}_{s+c}(\xi,\mathfrak{p}) &= M_{\mathrm{m}}k_{1}\frac{2-\alpha}{2}\left|\xi-\xi^{\star}\right|^{\frac{2}{2-\alpha}} + \frac{M_{\mathrm{m}}k_{2}}{R_{\mathrm{m}}}\frac{1}{\alpha+1}\left|\frac{\mathfrak{p}-\mathfrak{p}^{\star}}{M_{\mathrm{m}}}\right|^{\alpha+1} \\ &+ \frac{\beta}{2}(\xi-\xi^{\star})^{2} + \frac{\gamma}{2M_{\mathrm{m}}}(\mathfrak{p}-\mathfrak{p}^{\star})^{2}. \end{aligned}$$

• Energy of the controller: $\mathcal{H}_{s+c} - \mathcal{H}_s = \mathcal{H}_c \geq 0$

$$\mathcal{H}_{c}(\xi,\mathfrak{p}) = M_{m}k_{1}\frac{2-\alpha}{2}\left|\xi-\xi^{\star}\right|^{\frac{2}{2-\alpha}} + \frac{M_{m}k_{2}}{R_{m}}\frac{1}{\alpha+1}\left|\frac{\mathfrak{p}-\mathfrak{p}^{\star}}{M_{m}}\right|^{\alpha+1} + \frac{\beta}{2}(\xi-\xi^{\star})^{2} + \frac{\gamma}{2M_{m}}(\mathfrak{p}-\mathfrak{p}^{\star})^{2} - \frac{1}{2M_{m}}\mathfrak{p}^{2} - \frac{K_{m}}{2}\xi^{2} \ge 0$$

Passive finite-time control law

Passive finite-time control

Application to the loudspeaker system

• Controller $\{\mathcal{C}\}$:

$$\begin{split} \dot{\mathbf{x}} &= \left(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right) \nabla \mathcal{H}_{c}(\mathbf{x}) + \begin{bmatrix} \frac{1}{Bl} \\ \frac{R_{m}}{Bl} \end{bmatrix} \mathbf{u}_{c} \\ \mathbf{y}_{c} &= \begin{bmatrix} \frac{1}{Bl} & \frac{R_{m}}{Bl} \end{bmatrix} \nabla \mathcal{H}(\mathbf{x}_{c}), \end{split}$$

 $ightarrow eta > \mathcal{K}_{\mathrm{m}}$ and $\gamma > \mathcal{R}_{\textit{m}}$ for controller passivity

• Energy of the controller: $\mathcal{H}_{s+c} - \mathcal{H}_s = \mathcal{H}_c \ge 0$

$$\mathcal{H}_{c}(\xi,\mathfrak{p}) = M_{m}k_{1}\frac{2-\alpha}{2}\left|\xi-\xi^{\star}\right|^{\frac{2}{2-\alpha}} + \frac{M_{m}k_{2}}{R_{m}}\frac{1}{\alpha+1}\left|\frac{\mathfrak{p}-\mathfrak{p}^{\star}}{M_{m}}\right|^{\alpha+1} + \frac{\beta}{2}(\xi-\xi^{\star})^{2} + \frac{\gamma}{2M_{m}}(\mathfrak{p}-\mathfrak{p}^{\star})^{2} - \frac{1}{2M_{m}}\mathfrak{p}^{2} - \frac{K_{m}}{2}\xi^{2} \ge 0$$

Passive finite-time control law

(10/11) Passive Finite-Time Control of loudspeakers

Numerical results

Simulation configuration

- Power-balanced numerical scheme
- Input: logarithmic chirp $p_{
 m ac}(t)$
- Output: reflected pressure $p^{-}(t)$

Test cases

Time domain simulation

- Law 1: proposed passive finite-time (→ nonlinear) control
- Law 2: (reference) linear impedance-based control

$$\label{eq:absorption} \begin{split} \text{Absorption} \geq 75\% \\ \text{in any case} \end{split}$$

Numerical results

(11/11) Passive Finite-Time Control of loudspeakers

Numerical results

Simulation configuration

- Power-balanced numerical scheme
- Input: logarithmic chirp $p_{\mathrm{ac}}(t)$
- Output: reflected pressure $p^{-}(t)$

Test cases

- Law 1: proposed passive finite-time (→ nonlinear) control
- Law 2: (reference) linear impedance-based control

Conclusion & perspectives

Contribution

Construction and simulation of a passive finite-time control law

Efficient sound absorption in the low-frequency audio range

Perspectives

- Stiff problem of finite-time control around the origin (not Lipschitz continuous)
- Hardware implementation: passive delayed interconnection (current work)

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 46/60</p>

Context

Framework: basics, recalls and tools

3 Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

5 Control applications in acoustics

- Passive Finite-Time Control of loudspeakers [Lebrun, Wijnand et al., Nodycon'19]
- (zoom) Robotised testbed for brass instruments

[Lopes,PhD'16]

Voice: a minimal model to analyze self-oscillations

Conclusion

PhD, June 2016: Nicolas Lopes Passive modelling, simulation and experimental study of a robotised artificial mouth playing brass instruments

1. PHS/Simu of the complete system: air jet in a channel with mobile walls, etc

Voice: a minimal model to analyze self-oscillations

Motivation

[Hélie,Silva,Wetzel, 2019]

- A minimal PHS model for the full vocal apparatus
- Power-balanced numerical experiments: first results

Vocal apparatus: Physiology & Physics

Air is forced out of the lungs

... at the top of the trachea, it goes through the glottis, (=<u>constriction</u> between the vocal folds)

... before reaching the vocal tract (=pharynx, nose, mouth).

(active) (passive)

(passive)

Source: Seikel et al

Vocal apparatus: Physiology & Physics

Air is forced out of the lungs

... at the top of the trachea, it goes through the glottis, (=<u>constriction</u> between the vocal folds)

... before reaching the vocal tract (=pharynx, nose, mouth).

 $\frac{\textbf{Phonation}}{\text{larynx}} \text{ due to a } \frac{\textbf{nonlinear}}{\text{fluid/structure interaction in the}}$

Unstable equilibrium beyond some subglottal pressure threshold:

- $\rightarrow\,$ Vibration of the folds
- $\rightarrow\,$ Modulation of the glottal flow
- $\rightarrow~$ Coupling with acoustic waves in the vocal tract

Most of state-of-the-art physics-based voice models are **not power-balanced** and **violate passivity**.

(passive)

Vocal apparatus: Physiology & Physics

Air is forced out of the lungs ...

... at the top of the trachea, it goes through the glottis, (=<u>constriction</u> between the vocal folds)

... before reaching the vocal tract (=pharynx, nose, mouth).

Objective

Derive a minimal model of the voice production that

- restores a power balance
- is structured into components
- enables power-balanced time-domain simulations

and analyse its bifurcations and oscillation regimes

(active) (passive)

(passive)

6 Control applications in acoustics

Voice: a minimal model to analyze self-oscillations Motivation

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 51/60

- A minimal PHS model for the full vocal apparatus
- Power-balanced numerical experiments: first results

Vocal folds model

(i = l, r)

Each fold is modelled as a spring-mass-damping system to be coupled to the glottal flow through a cover spring.

• Momentum π_i and elongations ξ_i and η_i

$$H = \frac{1}{2} \left(\frac{\pi_i^2}{m_i} + k_i \xi_i^2 + \kappa_i \eta_i^2 \right)$$

- Dissipation $w_i = \pi_i / m_i$ and $z_i(w_i) = r_i w_i$
- Flow-controlled at the glottis port (v_i)
- Effort-controlled at the subglottal (*P*_{sub}) and supraglottal (*P*_{sup}) ports.

 F_i Force of the vocal fold on the glottal flow

- Q_{sup}^{i} Flowrate pushed into the supraglottal cavity
- Q_{sub}^{i} Flowrate pulled from the subglottal cavity

Glottal flow between two parallel mobile walls

Objective: account for the transverse velocity and for power exchanged on the walls

Kinematics:

$$\mathbf{v} = \begin{pmatrix} V_x(t) \\ V_y(t) \end{pmatrix} + \frac{V_{exp}(t)}{h(t)} \begin{pmatrix} -x \\ y - y_m \end{pmatrix}$$

$$V_x(t) \quad \text{mean axial velocity}$$

$$V_y(t) = \dot{y}_m \quad \text{mean transverse velocity}$$

$$V_{exp}(t) = \dot{h} \quad \text{transverse expansion velocity}$$

$$h(t) \quad \text{channel height}$$

2D field: Euler equation

$$\begin{aligned} \nabla \cdot \mathbf{v} &= 0, \quad \nabla \times \mathbf{v} = 0 \text{ on } \Omega(t) \\ \dot{\mathbf{v}} &+ \nabla \left(\frac{p}{\rho_0} + \frac{|\mathbf{v}|^2}{2} \right) = 0 \\ \text{BCs} \quad \mathbf{v}_y(y_r) &= \dot{y}_r \quad \mathbf{v}_y(y_l) = \dot{y}_l \\ \text{with} \quad h &= y_l - y_r \text{ et } y_m = \frac{y_l + y_r}{2} \end{aligned}$$

Reduced order dynamics

$$\begin{split} m(h)\dot{V}_{x}(t) &= L_{0}h\left(P_{tot}^{-} - P_{tot}^{+}\right) \\ m(h)\dot{V}_{y}(t) &= F_{r} - F_{l} \\ m_{e}(h)\dot{V}_{exp}(t) &= L_{0}\ell_{0}\left(P_{tot}^{-} + P_{tot}^{+}\right) - \frac{F_{r} + F_{l}}{2} - \partial_{h}H \\ \dot{h} &= \frac{1}{m_{e}(h)}\partial_{V_{exp}}H \\ H(V_{x}, V_{y}, V_{exp}, h) &= \frac{1}{2}m(h)\left(V_{x}^{2} + V_{y}^{2}\right) + \frac{1}{2}m_{e}(h)V_{exp}^{2} \end{split}$$

Full vocal apparatus

Air supply: an ideal pressure supply P_{sub}

Subglottal cavity: uniform pressure/volume flow division

Vocal folds: as described before

Glottal flow: alternative formulation based on momentum (including scaling factor h_0)

Mixing region: the jet loses its kinetic energy into heat, without pressure recovery Dissipation w_{mix} & uniform pressure/volume flow division

Vocal tract: modelled as an acoustic resonator, with a modal representation of its input impedance. For each resonance (ω_n, q_n, Z_n) , state variables $X_n^{\rm ac}$ and $Y_n^{\rm ac}$ & dissipation $w_n^{\rm ac}$

After elimination of linear dissipation variables:

Right vocal fold	$\begin{pmatrix} \dot{\xi}_r \\ \dot{\pi}_r \\ \dot{\eta}_r \end{pmatrix}$		$\begin{pmatrix} 1 \\ -1 - r_r & 1 \\ -1 & -1 \end{pmatrix}$		h ₀	-1	$-S_{sup}^{r}$		$-S_{sub}^r$)($ \begin{array}{c} \partial_{\xi_r} H \\ \partial_{\pi_r} H \\ \partial_{\eta_r} H \end{array} $
Left	ξı			1					,		$\partial_{\xi_l} H$
vocal	$\dot{\pi}_l$			$-1 - r_l \ 1$			$-S'_{sup}$		$-S'_{sub}$		о _т н а н
fold	$\dot{\eta_l}$			-1		$\frac{h_0}{h}$ -1					$\frac{\partial_{\eta_l} \Pi}{\partial_{\eta_l} \Pi}$
	Π _×	=					$-L_0 h_0$	$-L_0 h_0$	$L_0 h_0$		0 _{Пx} п дъ н
Glottal	Пy		$-\frac{n_0}{h}$	$\frac{n_0}{h}$							о _{Пу} н али
flow	П _{ехр}		1	1			$-2 2L_0 \ell_0$	$2L_0\ell_0$	$2L_0\ell_0$		On _{exp} n
	<u>h</u>					2					
Vocal	X ₁ ^{ac}		S_{sup}^r	S'_{sup}	$L_0 h_0$	$-2L_0\ell_0$	$-R_{ac}$ -1				$V_{X_{ac}}H$
tract	Y_1^{ac}			-			1				$\nabla_{Y_{ac}}H$
Mixing					$L_0 h_0$	$-2L_0\ell_0$				11	Zmix
Port	$\left(-Q_{sub}\right)$		S ^r _{sub}	S ¹ _{sub}	$-L_0 h_0$	$-2L_0\ell_0$				/ \	P _{sub}

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

6 Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Motivation

- A minimal PHS model for the full vocal apparatus
- Power-balanced numerical experiments: first results

Power-balanced numerical experiments

 $\begin{array}{l} \underline{\text{Parameters values from literature:}}\\ \hline \text{Folds:} \quad m_i=0.2\,\text{g}, \ r_i=0.05\,\text{N}\,\text{s}\,\text{m}^{-1}, \\ \kappa_i=3k_i, \\ S_{sup}^{i}=1.1\,\text{mm}^2, S_{sub}^{i}; \ 1.1\,\text{cm}^2\\ \hline \text{Glottis:} \ \ l_0=11\,\text{mm}, \ 2\ell_0=4\,\text{mm}\\ \hline \text{Vocal tract: first resonance of } /a / \\ f_0=640\,\text{Hz}, \ q_0=2.5, \ Z_0=1\,\text{M}\Omega\\ \hline \text{Input } P_{sub}; \ 0 \nearrow 800\,\text{Pa within } 20\,\text{ms}\\ \end{array}$

Power-balanced numerical experiments

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Parameters values from literature:} \\ \mbox{Folds:} & m_i = 0.2\,{\rm g}, \ r_i = 0.05\,{\rm N\,s\,m^{-1}}, \kappa_i = 3k_i, \\ S_{sup}^i = 1.1\,{\rm mm}^2, S_{sub}^i: 1.1\,{\rm cm}^2 \\ \mbox{Glottis:} \ L_0 = 11\,{\rm mm}, \ 2\ell_0 = 4\,{\rm mm} \\ \mbox{Vocal tract: first resonance of } /a / \\ f_0 = 640\,{\rm Hz}, \ q_0 = 2.5, \ Z_0 = 1\,{\rm M}\Omega \\ \mbox{Input P_{sub}:} \ 0 \end {areal} \ 800\,{\rm Pa} \ {\rm within} \ 20\,{\rm ms} \end{array}$

Open glottis ($h_r = 1 \text{ mm}$) $k_r = k_l = 100 \text{ N m}^{-1}$ Natural frequency of folds: 112 Hz ×10⁻⁴ Ē 1.5 Left F. **Bight** F Glottis 0.5 Elongations 2 ×10⁻³ 0.05 0.1 0.15 0.25 0.35 04 0.45 t (s) No oscillation onset

Periodic oscillations:

- Oscillation stabilized after some transient
- Synchronized folds vibrations even without contact between folds

Power-balanced numerical experiments

Strong asymmetry

 $k_l = 100 \text{ N m}^{-1} (112 \text{ Hz})$ $k_r = 149 \text{ N m}^{-1} (137 \text{ Hz})$ with adduction ($h_r = 0.1 \text{ mm}$)

Quasi-periodic oscillations:

- starting on the left (lax) vocal fold,
- transferred to the right (stiffer) fold for the steady state regime.

Periodic oscillations:

- Oscillation stabilized after some transient
- Synchronized folds vibrations even without contact between folds

Bifurcation analysis

(internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

Hopf bifurcation

Onset pressure very close to the one obtained from time-domain simulation using PyPHS.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 57/60

Bifurcation analysis

(internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

Hopf bifurcation

Onset pressure very close to the one obtained from time-domain simulation using PyPHS.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 57/60

Bifurcation analysis

(internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

Hopf bifurcation

Onset pressure very close to the one obtained from time-domain simulation using PyPHS.

Force during glottal closure

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の へ つ 57/60

Interpretation of other results on bifurcation analysis

Oscillation thresholds

- × Continuation of Hopf points (ANM)
- ★ Estimation from time-domain simulations

- \rightarrow Explicit bifurcation delay
- \rightarrow Related to dynamic bifurcation phenomenon?

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ○ 58/60</p>

Interpretation of other results on bifurcation analysis

Oscillation thresholds

- × Continuation of Hopf points (ANM)
- * Estimation from time-domain simulations

 \rightarrow Explicit bifurcation delay \rightarrow Related to dynamic bifurcation phenomenon?

Interpretation of other results on bifurcation analysis

Oscillation thresholds

- × Continuation of Hopf points (ANM)
- Estimation from time-domain simulations *

 \rightarrow Explicit bifurcation delay \rightarrow Related to dynamic bifurcation phenomenon? Asymmetric vocal folds (L. Forma) Bifurcation diagrams of ξ_I and ξ_r $k_{l} = 150 N/m$ $k_r = 100 N/m$ ξı 3.0 - Er 2.0 2.0 -H11.0 -0.0 0.0 -1.0 200 400 200 1000 1200 200 400 600 800 1000 1200 Psub Psub

Second Hopf bifurcation

for a sufficient degree of asymmetry

Outline

Context

Framework: basics, recalls and tools

Analog electronics and electro-acoustics

Mechanics: nonlinear damped vibrations

Control applications in acoustics

Voice: a minimal model to analyze self-oscillations

Conclusion

General conclusion and perspectives

Models and methods (in progress)

1	Nonlinear materials and damping	[Matignon, Roze]
2	Various families of power-balanced numerical schemes	[Muller,Roze]
3	Automatic code generators for real-time applications	[Falaize,Muller]
4	Passive Finite-Time Control Design [d'Andréa-Novel,Lel	brun,Roze,Wijnand]
5	Digital Passive Controller for hardware applications	[Lebrun]
6	Voice physical-based synthesis	[Silva, Wetzel]
0	Regime analysis of self-oscillating PHS [S	ilva, Terrien, Wetzel]

Projects based on PHS

- Audio/Acoustics Virtual Factory
- Q Augmented/Hybrid Musical Instruments with hardware development
- Seprogrammed transducers (ideal HIFI louspeaker, acoustic absorber, etc)

General conclusion and perspectives

Models and methods (in progress)

1	Nonlinear materials and damping	[Matignon, Roze]	
2	Various families of power-balanced numerical schemes	[Muller,Roze]	
3	Automatic code generators for real-time applications	ne applications [Falaize,Muller]	
4	Passive Finite-Time Control Design [d'Andréa-Novel,Le	brun,Roze,Wijnand]	
5	Digital Passive Controller for hardware applications	[Lebrun]	
6	Voice physical-based synthesis	[Silva, Wetzel]	
0	Regime analysis of self-oscillating PHS [S	ilva, Terrien, Wetzel]	

Projects based on PHS

- Audio/Acoustics Virtual Factory
- O Augmented/Hybrid Musical Instruments with hardware development
- Reprogrammed transducers (ideal HIFI louspeaker, acoustic absorber, etc)

– The end –

Thank you for your attention